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An approach to the inverse problem of quantum scattering at fixed angular momentum I 
using new nonlinear equations is proposed. In this approach, energy levels, normalization 
constants, and the Jost function of the problem on the interval with a variable left bounary 
[r, co) are considered. These functions as functions of r numbered by energy E as an index 
(discrete or continuous) satisfy the infinite system of ordinary first-order differential equations. 
The scattering data serve as initial conditions for this system, and the inverse scattering 
problem is reduced to the Cauchy problem. As the functions considered in our treatment are 
slowly varying functions of r, the equations presented here are convenient for practical 
calculations. Some numerical examples show that the problem of reconstruction of the 
potential can be solved with high accuracy even with the simplest algorithms. 0 1991 

Academic Press, Inc. 

1. INTRODUCTION 

Transformation of the linear Schrijdinger equation into the non-linear Milne 
equation for the wave function amplitude is widely used in the direct problem of 
quantum mechanics, i.e., in the calculation of energy levels and scattering 
phaseshifts in a given field [l-5]. The advantages of this approach are connected 
with the fact that the wave function amplitude is slowly varying, contrary to the 
wave function itself. The same advantages are typical of different versions of the 
phase-function method based on numerical integration of the non-linear phase 
equation [6, 73. 

A similar approach is proposed in the present paper to the inverse problem of 
quantum scattering at fixed angular momentum 1. This problem consists in 
reconstruction of the central potential U(r) when scattering data-phaseshift q(E) 
(0 < E < cc ), energy levels E,, and normalization constants C,-are known for 
given 1. The approach presented differs principally from the traditional Gel’fand- 
Levitan method [S, 93 and generalizes the results of [lo]. It is based on the new 
exact system of equations for solution of the reduced inverse problem. This system 
consists of the non-linear ordinary first-order differential equations for the 
slowly varying functions of variable r-lF(E, r)l, E,(r), and C,(r) (06 EC co, 
n = 1, 2, . ..) N(r)). Here IF(E, r)l, E,(r), and C,(r) are the modulus of the Jost func- 
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tion, the nth energy level, and the nth normalization constant, corresponding to 
quantization in the field U(x) on the interval r 6 x < 00. Energy E plays, in fact, the 
role of the index which numbers the unknown functions: the usual summation 
corresponds to the discrete spectrum and integration over E to the continuous one. 
When r --+ 0 then IF’(E, r)l + IF(E E,(r) -+ E,, C,,(r) + C,, where IF(E E,, C, 
are the usual set of scattering data. So we see that they serve as initial conditions 
for our system and thus the inverse problem is reduced to the Cauchy problem. 

As the functions IF(E, r)l, E,(r), C,( ) r are uniquely connected with the spectral 
density p(E, r) of the Schrodinger operator on the interval [r, co), our system can 
be considered as a non-linear equation for p(E, r). The inverse scattering problem 
is equivalent to the initial-value problem for this equation, as p(E, 0) is expressed 
in terms of scattering data. 

In the simplest case-when bound states are absent-our system converts to the 
integro-differential equation for the amplitude of the Jost solution which was 
obtained by the author earlier for the case I = 0 [lo]. 

The mathematical problems connected with the proof of the unique existence of 
the solution for the non-linear system presented require a special investigation and 
are not discussed here. 

To detemine the efficiency of our approach the test numerical calculations 
have been performed for different cases. They show that the potential may be 
reconstructed by our method with high accuracy even if the simplest calculation 
algorithms are used. 

2. PRINCIPAL NOTATIONS 

Let a central potential U(r) decrease faster than r-2 as r + co. In the system 
where h = 1, 2m = 1 (m being the mass of the particle), the radial Schrodinger 
equation reads 

f”(r)+[E-1(/+1)rp2-U(r)]f(r)=O. 

The Jost solution of (1) is fixed by the condition 

f,(E, r) ,, ew(ikr), 

(1) 

(2) 

where k = El/‘. The notation fp (E, r) is used for the Jost solution corresponding to 
U(r) = 0: 

fy(E, r)=exp[irr(l+ 1)/2](nkr/2)“2H~:),,,(kr). (3) 

Here H!,“(z) is the Hankel function [ll]. 
As the angular momentum 1 is fixed we shall omit index 1 for brevity everywhere 

except in Eqs. (25)-(27) and (33))(36): 

fit& r) -fE r), f?(E, r) =f’(E, r). 
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The Jost function F(E) = F,(E) is defined by the relation [S] 

F(E) = IF(E)I exp C - W%l = !‘_“, f(K rh!f”W, r), (4) 

q(E) s qr(E) being the scattering phase shift. 
Let cp(E, r) = cp,(E, r) be the solution of (1) which satisfies the boundary 

condition at r = 0: 

cp(E, r) = r’+‘/(21+ l)!!. 
r-r0 (5) 

In the continuous spectrum (E> 0) we have 

~(6 rJ=& f(E, r) F*(E) exp --f*(E, r) F(E) exp (:)I 
(6) 

(S* denotes the complex conjugation of f). In the discrete spectrum the bound 
state with energy E, E E,,< 0 is described by the eigenfunction p,,(r) 3 cp(E,, r). 
The corresponding normalization constant is given by 

(7) 

The inverse scattering problem with 1 fixed consists in the reconstruction of the 
potential U(r) when lF( E)I, E,, and C, are known for this f, for all E E [0, co) and 
n = 1, 2, . . . . N. Because of the known dispersion relation between modulus and 
phase of the Jost function [8], 

In IF(E)1 = f ln(1 -l&/E)-ifo? E, EE 10, ~0) (8) 
n=l 

(fr is the principal value of the integral), one may consider the function (F(E)J, 
given instead of q(E). In other words, the spectral density p(E) defined by 

i 

E/+1/2,.-1 
IF(E)I -2, E>O 

P(E)= N 
c C’,-’ 6(E- E,), E<O 

j= 1 

5 
a cp(E,r)cp(E,r’)p(E)dE=i?(r-r’), 
-0c 

where 6(x) is the delta function, serves as the input data for the problem under 
consideration. 
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Let E,(r) be the root of f(E, r) as a function of E: 

.0&(r), r) = 0, E,(r)<O, n = 1, 2, . ..) N(r). 

It is evident that E,(r) is the energy of nth bound state in the field U(x) when the 
interval of quantization is x E [r, co), i.e., when the motion is restricted at x = r by 
an infinite wall. At r = 0 these levels coincide with the initial levels E, (0) = E,,. They 
increase monotonically with r and merge with continuum at some r = r,,: 

E,(r,) = 0. 

The approach presented in this paper is founded on the system of equations for 
If(E, r)l and E,,(r). It is convenient, however, to transform this system into the 
system for functions IF(E, r)l, E,,(r), and C,(r), where 

F(E, r) = f(E, r)/f’(E, r) 

C,,(r) = C-%(~)l~’ IE,(r)l -‘Cf”(En(r), r)l p2. 
(9) 

The functions F(E, r), E,(r), C,,( r are the Jost function, the energy of the n th ) 
bound state, and the nth normalization constant, respectively, for the scattering 
problem on the interval [r, co). Instead of (5) we now have the solution of the 
Schrodinger equation q(r, E; x) (x is an independent variable, r is a parameter 
indicating the left boundary of the interval) which satisfies the initial conditions 

dr, E;x)l.=,=O 

&p(r, E;~)l.=.=lEl~~~ If”(E,r)lp’. 
(10) 

In the discrete spectrum the nth eigenfunction is cpn(r, x) = cp(r, E,(r); x), while 
C,(r) (9) is the normalization constant for (Pi (r, x). Indeed, (Pi (r, x) is given by 

q,dr, x) = IEI -‘* If”(E, r)l- ’ Cf’C-5 rJ1-I f(E, x)l E= Entrj. 

Taking into account the relations 

s 3c f2(E, xl dx =f(E, r) f’(E, r) -f’(E, r) f(E, r) r 

where 

E,Xr) = -f’(E, r)/f(K rh=Encrj, 

f’(E, r) = WE, r)lar, .f(E, r) = WE, rWZ 

(11) 

we have 

s n; d(r, x) dx = IE,(r)l -‘I If”(E,,(r), r)l p2CEi(r)] -’ = C,(r). (12) ,. 
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It is evident that functions IF(E, r)l, E,(r), C,(r), which play the central role in our 
approach, are connected with the spectral density p(E, r) of the problem (1 ), (10) 
on the interval [r, co): 

i 

El+ 1/271 ~ 1 IUE, r)l p2, E>O 

p(E, r) = WI 
1 C;‘(r) 6(E- Ej(r)), E<O 

j=l 

s 
Oc cp(r, E; x) cp(r, E; x’) p(E, r) dE = 6(x -xl). 
-0c 

(13) 

In the limit r -+ 0 the functions F(E, r), E,(r), C,(r) are equal to F’(E), E,, C, (7), 
respectively: 

F(E, 0) = F(E), E,(O)=En, C,(O)=C,. (14) 

For F(E, r) and E,,(r), it is obvious. For C,(r), it follows from the equality 

lim cp(r, E; x) = cp(E, x), 
r-o 

where -cc <E< cc and cp(E, r) is fixed by (5). To prove the last equality it is 
enough to check only that the following limiting transition for Wronskians is true: 

Cdr, E; x),f(E, x)1 = -f(E, r) El -“2 If”VZ r)lp’ ==o Cv(E, XL f(E, x)1. 

3. REDUCTION OF THE INVERSE PROBLEM 
TO THE INITIAL-VALUE PROBLEM 

The principal moment of our derivation is the dispersion relation for function 
F(E, r) which is similar to (8) and is obtained in the same way. It is known [S] 
that f(E, r) is an analytical function of E in the complex plane with the cut along 
positive real axis. All its roots are situated on the negative real axis. At large E this 
function has the following asymptotics [S]: 

f(E, r) Ezm exp(ikr), k = E’12. 

As f’(E, r) is also an analytical function in the complex plane E with the cut 
[0, co), having no roots and coinciding with exp(ikr) at large E, the function 
In F(E, r) = ln(f(E, r)/f’(E, r)) is an analytical function in the E-plane with the cuts 
[0, co), [En(r), -ice), n= 1,2, . . . . N(r). It vanishes at large E; therefore we have 

lim s 
ln JI-E r) dE=o 

R-tm ~,q E-E 

(DR being the semicircumference of radius R in the upper half-plane). Starting from 
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this equality after deformation of path of integration and separation of the real part 
we obtain, in usual way, the dispersion relation 

ln,F(L7r)l=~‘ln/l-E,(r),EI+~f~ar~~~r)~~, -cc<E<co. (15) 
j= 1 

The sum in (15) includes all N(r) bound states which exist at given r in the field 
U(X) on the interval [r, co). It is important that relation (15) is valid not only for 
E > 0, but also for E < 0, including the neighbourhoods of E = E,(r), where both 
parts of equality have logarithmic singularities. At r =O, E >O (15) coincides 
with (8). 

Let us now write the differential relation between IF(E, r)l and arg F(E, r) 
at fixed positive energy. At E > 0 the functions f(E, r) and f*(E, r) are two 
independent solutions of the Schrodinger equation with the Wronskian 

[f(E, r),f*(E, r)] = -2i If(E, r)12 a[argf(E, r)]/dr = -2iE1j2. 

From this formula and the similar equality for f”(E, r), we obtain the necessry 
relation 

g arg F(E, r) = E”*(lf(E, r)l p2 - If’(E, r)l -‘) 

= El’* If”(E, r)l p2(IF(E, r)l-‘- 1). (16) 

After differentiation of (15) with respect to r and substitution of (16) in the result, 
we have 

i If’E r)l 

PIE, r)l 

This relation is valid for all real E and contains, in fact, all equations of our 
method. To obtain them in the explicit form we use (17) as it is for E > 0 and 
consider the limit E + E,(r) (n =.l, 2, . . . . N(r)) for E-CO. The expansion of 
f’(E, r)/‘(E, r) as a function of E in the neighbourhood of a pole E = E,(r) has the 
form 

f’b% r) f’ -= 
.fE r) j-(~ - E,) 

[l+($$)(~-EJ+ . ..I. 

where prime and point denote the partial derivatives with respect to r and to E 
correspondingly. The functions f’, f, f’, and jl in the right-hand part of (18) are 
taken at E = E,,(r). After differentiation of the identity f(E,(r), r) = 0 with use of 
theequalityf”(E,(r),r)= -[En(r)-1(1+l)r-2-U(r)]f(E,(r),r)=0, we obtain 

f’(E, r)/f(E, r)lE=Encrj = -E,Xr), 
Cf’(E, rVf’(E, r) --&T r)Pf(E, r)IIE=EncrJ = E,i’(rYXE,i(r)12. 
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Substitution of them is (18) gives 

f YE, r) 
f(E, y) E+Zr) - E~~\r)-$f$+O(E-E,(r)). (19) 

With the use of (19), we obtain from (17), in the limit E+ E,(r), 

KY(r) --- = f”‘(En(r)9 r) + c E;(r) 
2E,Xr) f”(En(r), r) j+n E,(r)--E,(r) 

+A s 
m (~F(~,r)~~2-l)~“2d~ 

n 0 If”(,!?, r)l’(&E,(r)) . 
(20) 

This equation, jointly with Eq. (17) at E > 0, composes the main system of equa- 
tions of our approach. As the scattering data are connected (see Eq. (14)) with the 
values of the functions IF(E, r)l, E, ( ) r , and C,(r) at r = 0, it is convenient to trans- 
form Eqs. (17) and (20) to a system (of first order) for these functions with the help 
of relation (9). Moreover, for the convenience of numerical calculations it is 
necessary to exclude the singularity of the integrand in Eq. (17). This may be done 
by subtracting 

k (IF(E, r)l p2- 1) If”(E, r)lm2EfU Bp’12(8- E)-’ d,!?=O 
0 

from Eq. (17). As a result we obtain the non-linear system 

$ ln PIE, r)I 

N(r) 

= 1 CCj(r) IEj(r)l’f02(Ej(r)3 r)(Ej(r) - WI PI 
j= 1 

+‘j m (IF(,f?, r)l-‘- 1) If”(& r)lp2~-(IF(E, r)l-‘- 1) If’(E, r)lp2EdE 

7t 0 ,!?‘2( E - E) 
, 

(21) 

-$n C,(r)=2 c CCj(r) IEj(r)l’fo2(Ej(r), r)(Ej(r)-&(r))l-’ 
i#n 

-c 
1 

2j‘o(EH(rh r, C’(r) I,!?,(r)1 PI If’(E,(r) 
E,(r) + f’(E, (rh r) 1 n 

7 r)lp2 

(23) 
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This is the system of ordinary first-order differential equations in which the 
unknown functions IF(E, r)l, E,(r), C,(r) are numbered by the continuous 
parameter E > 0 and by the discrete index n = 1, 2, . . . . N(r). It contains neither the 
interaction potential nor the scattering data. The problem of finding IF(E, r)l, E,,(r), 
C,(r) (0 Q E < co) for the given scattering data is reduced to the Cauchy problem 
for the system (21)-(23) with initial conditions (14) at r = 0. The determination of 
U(r) when IF(E, r)l is known does not present any difficulties (see Eqs. (24))(27)). 
So we see that the inverse scattering problem is reduced, in fact, to the Cauchy 
problem. 

The Cauchy problem for Eqs. (21t(23) with initial conditions at some point r,, 
has a unique solution at r > r. and an infinite set of solutions at r < ro. Although 
this fact is natural from the physical point of view-the field U(x) influences on 
f(E, r) only at x > r-it needs, of course, a rigorous proof which is the subject of 
a special investigation and is not considered in the present paper. For the case when 
the perurbation theory is applicable, this question is studied in [lo]. 

In the point r = rn (n = 1, 2, . . . . N(r)), where the nth bound state reaches the 
boundary of the continuum, E,(r) and F(0, r) become zero, C,(r) becomes infinite, 
and N(r) undergoes the sudden change N(r -0) - N(r + 0) = 1. This presents 
technical difficulties in the numerical calculations, as the system (21))(23) contains 
singularities at r = rn. These difficulties, however, may be overcome by the 
corresponding analytical approximation in the neighbourhood of r = r, (see 
Eqs. (28 )-( 32)). 

When bound states are absent, our system consists of the single equation (21) 
which does not contain the sum; for I= 0 it was obtained in [lo] and has the 
simplest form 

After solution of the Cauchy problem and evaluation of IF(E, r)l, one can obtain 
U(r) from the non-linear Milne equation 

I$ If(E, r)l + [E-1(1+ l)r-*-- U(r)] ME, r)l =E If(E, r)l-‘. (24) 

In practice, however, it may be more convenient to calculate U(r) with the help 
of the asymptotic formula for IF(E, r)l at E -+ co. If U(r) has a continuous 
derivative, this formula reads 

IFA- r)l E:m 1+ 4E uOz Im fp-, (z)fP,, (~)f~*w341+4-‘). 
[ 

(25) 

Here the notations with explicit dependence on 1 are used and the fact that fp(E, r) 
depends only on the product E’/*r is taken into account: 

fl(E, r) =f~Cz), z = Elf2r. 
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The asymptotic formula (25) is obtained from the Lippman-Swinger integral 
equation for f(E, r) [S] with the help of integration by parts. It is uniform in the 
neighbourhood of r = 0 (U(0) is supposed to be finite). In this point formula, 
Eq. (25) gives 

IF,(E, 0)l ET’, 1+ (21+;;u(o)+ o(E-1). 6’6) 

Far from r = 0, we have 

IF/(& r)l E+=m 1 + U(r)/4E+ o(E-‘). (27) 

4. COMPUTATIONAL METHOD AND NUMERICAL RESULTS 

Equations (21)(23) of our approach on the one hand are exact and on the other 
hand are well suited to be solved numerically with the help of standard calculation 
methods developed for the Cauchy problem. To estimate the efficiency of 
such calculations the algorithm based on Eqs. (21)-(23) was worked out and 
calculations for some examples have been performed. 

The Cauchy problem (21 t(23), (14) was solved by the second-order 
Runge-Kutta method (the midpoint method [ 123) with constant stepsize h,. In the 
integrals (21), (23) the substitution of variable E = k* was made. Numerical integra- 
tion over k was conducted by the Simpson method with constant stepsize h, on the 
interval [0, k,], where k, = hkNk, Nk being the number of steps. At k > k, the 
approximation 

lF(k*, r)l = 1 + A/k2 + B/k4 

was used, where A and B were determined from the equations 

IF(k;, r)l = 1 + A/k; + B/k;, 

lF(k;, r)l = 1 + A/k: + B/k:, k,=k,-h,. 

Using this approximation, corresponding integrals along k E [k,, co ) were 
calculated analytically. 

In the neighbourhood of the point r = Y,, k = 0, the approximation 

f(k2, r) = b(r - r,) - ik/b, b = f’(O, r,) (28) 

was used. This is a truncated Taylor series; in our examples f(k*, r) is the analytical 
function of k at Im k > p < 0, therefore the expansion into a power series near k = 0 
is legitimate. In Eq. (28) the relation between partial derivatives with respect to r 
and to k near r=r,,, k=O, 

af(k', de = -i 
ar ak ,k=; ’ 

(29) 
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is taken into account. This relation follows from the study of the normalization 
integral for f( E, ( Y), r) as r + rn. Indeed, in accordance with Eq. (11) we have 

s m f’(E, (r), x) dx = -f’W, (r), r) .f(E, (r), r). 
r 

(30) 

On the other hand, it is easy to check, that 

s Oc f*(E, x) dx Ezpo l/2( -J?$/* + O(1). (31) r 

From Eqs. (30), (31), and equality f= (1/2k) t?f/cYk we obtain Eq. (29). 
The expressions for E,(r) and C,(Y) in the neighbourhood of r = r,*, which follow 

from Eqs. (28) and (9) read 

‘I 

E,,(r)= -b4(r-rn)*, 
‘“(‘)=2b4[(21- i;!!]‘(r,-r)’ (32) 

Calculation of the potential U(r) was conducted simultaneously with the solution 
of the Cauchy problem (21)-(23) (14) in accordance with asymptotic formula (25). 
For I = 0, 1 it gives 

IFo(E, r)l E,=, 1+ W-W (33) 

IF,(E,r)lE~m 1 +ss, z = ELi2r. (34) 

The numerical test calculations were performed for such scattering data, for 
which the solution of the inverse problem, i.e., the potential U(r), was known in 
analytical form. In the first example the calculations were conducted at 1= 0, 1 and 
in the others, only at I = 0. The following examples were considered: 

1. Bound states are absent (N= 0). Jost function modulous has the form 

IF( =(E+u*)~‘*(E+~*)~~‘*. (35) 

In this case the solution of the inverse problem is the Bargmann potential, 

U, (r) = 2(b2 -a*) 
b*-u*-X;+y; 

(XI- Y/l2 ’ 

where angular momentum 1 is arbitrary: 

(36) 

xl = cp?‘( - b2, r)ld’( -b*, r), yl=fl'(-a2, rYf"(-a2, r). 
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At 1= 0, 1 these values are given by (a > 0, h > 0) 

x0 = h cth br, y,= --a (37) 
1 - br + b2r2 - exp( -2br)( 1 + br + b2r2) 

x1 = - 
r[ 1 - br - exp( - 2br)( 1 + br)] 

1 + ar + a2r2 
(38) 

Yl= - r(1 +ar) 

2. The angular momentum and the number of bound states are equal to zero, 
I = 0, N = 0. The Jost function has a double root at k = - iu, a > 0 and a double 
pole at k = - ib, b > 0; its modulus is given by 

IF( = (E+ a’)/(E+ b*). (39) 

These scattering data correspond to the Bargmann potential [lo], 

U,(r)= UO(l -2)’ 

X 
exp(x)(lx - A2 - 2il+ 1) - exp( -x)(Lx - 1’ + 23L + 1) A4 + 4L3 

[exp(x) - A4 exp( -x) - 2L2x + 2A3 - 211’ 
’ (40) 

x = 2br, A. = (a - b)/(a + b), U, = U, (0) = 4(a2 - b*). 

3. The number of bound states N depends on parameter s > 0 

the Jost function modulus, energy levels, and normalization constants are defined 
by the formulae (I = 0) 

n(k/sh(xk))“’ 

‘F(E)‘=lr(1/2-~/2+ik/2)r(l +s/2+ik/2)1’ 
k = E’12, (41) 

En= -(s+ I -2n)*, (42) 
.1’*2”p3(n- l)! T(s+ 1 -n) 

‘,= (s-2n+ 1)(2n-- l)!! T(s-n+3/2)’ (43) 

where T(x) is the gamma-function [ 111. The solution of the inverse scattering 
problem in this case is 

U,(r)= -s(s+l)ch-2r. (44) 

4. The Jost function modulus is given by (I = 0) 

JF(E)J = J2F, (i(p - v), 1 + i(p -v), 1 - 2iv; x)\, (45) 
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0 1 2 3 
r 

FIG. 1. Some potentials reconstructed by presented method: (iI (Eq. (36)burves 2 (I=O, 
U,(0)=2(a2-b2)/(21+ l)= -1.0, I= (a-b)/(a+b)= -0.5); 5 (I=O, U,(O)= 1.0, 1~0.5); and 7 
(/=l, U,(O)=l.O, A=(7-2fi)/3). U,(r) (Eq.(40)burves 1 (U2(0)=4(a2-/I*)=-1.0, 
%=(a-b)/(a+b)= -0.7) and 6 (U,(O)=l.O, A=O.S). U,(r) (Eq.(44)burve 3 (.r=O.S). U4(r) 
(Eq. (46))--curve 4 (UO = 1.0, a = 0.11, R = 0.5). Discrepancy with exact values is visible only for curve 
7 (for I = 1, calculated I/, (r) oscillates at small r). 



528 D. I. ABRAMOV 

TABLE I 
Potential U,(r) at l=O, 1 for Three Values of the Parameters 

Cr, = U, (0) = 2(a* - b2)/(2/ + 1) and /I = (a - b)/(a + b) 

I 0 0 1 

uo - 1.0 
1. -0.5 

1.0 
0.5 (7-2$!),3 

ir 
0.02 
0.1 

r 4 100 

0.02 
0.2 

80 

0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

0.20 

0.40 

0.60 

0.80 

1.00 

1.20 

1.40 

1.60 

1.80 

2.00 

2.20 

2.40 

2.60 

2.80 

3.00 

3.20 

- 1.00000 
-0.99998 
-0.98985 
-0.98983 
-0.97942 
-0.97940 
-0.96872 
- 0.96870 
-0.95776 
-0.9577s 
-0.94657 
-0.94655 
-0.88755 
-0.88754 
-0.76031 
-0.76031 
-0.63180 
-0.63181 
-0.51190 
-0.51192 
- 0.40632 
- 0.40637 
-0.31730 
-0.31738 
- 0.24465 
- 0.24475 
-0.1868 
-0.1869 
-0.1415 
-0.1417 
-0.1066 
-0.1068 
- 0.0800 
-0.0801 
-0.0598 
- 0.0600 
- 0.0446 
- 0.0448 
-0.0332 
-0.0333 
- 0.0247 
- 0.0248 
-0.01837 
-0.01845 

l.OOOOOQO 1.0000 
0.9999992 0.9991 
0.97064 0.999 
0.97065 1.036 
0.94250 0.996 
0.94253 0.968 
0.91553 0.991 
0.91556 0.983 
0.88965 0.985 
0.88970 0.991 
0.86482 0.9777 
0.86487 0.9776 
0.75442 0.9256 
0.75450 0.9250 
0.58674 0.7874 
0.58684 0.7878 
0.4672 0.64724 
0.4673 0.64726 
0.3791 0.52436 
0.3792 0.52441 
0.3124 0.4225 
0.3125 0.4223 
0.2606 0.3401 
0.2608 0.3397 
0.2197 0.274 
0.2199 0.273 
0.1869 0.222 
0.1871 0.221 
0.1601 0.180 
0.1605 0.179 
0.1381 0.147 
0.1385 0.146 
0.1198 0.120 
0.1202 0.119 
0.1044 0.0989 
0.1048 0.0983 
0.0913 0.0818 
0.0918 0.0816 
0.0802 0.068 1 
0.0807 0.0682 
0.0707 0.0570 
0.0712 0.0574 
0.0624 0.0480 
0.0629 0.0486 

Nofe. Upper values are calculated by (36), lower values by our 
method with scattering data (35). The number of equations Nk and 
the steps of integration h,, h, are also shown. 
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where 2F, (a, /I, y; x) is the hypergeometric function [ 111, 

v = &I= p=a(E+ U#*, x=(1 +exp(-R/a)))‘. 

The values a, R, and U, are the parameters. The case without bound states is 
considered. These scattering data correspond to the Woods-Saxon potential, which 
is often applied in nuclear physics, 

uo 
u4(r)= - 1 +exp((r- R)/a)’ 

The results of the numerical calculations and their comparison with exact values 
are given in Figs. l-3 and Tables I-IV. 

Figure 1 demonstrates the examples of reconstructed potentials in the absence of 
bound states. In the figure scale the potentials, obtained by numerical solution of 

b 

1 r 2 3 

FIG. 2. Reconstruction of potential U3 (r) = --s(s + l)/ch2r when one bound state exists (S = 1.5): 
a. Calculated (solid curve 1) and exact (dashed curve 1) values of (ix(r); energy of bound state E,(r) 
(curve 2). b. Calculated values of IF(k’, r)l at k = 0, 0.15, 0.30, 0.45, 0.60, 0.75 (solid curves); exact values 
of IF(O, r)l for r > rl (dashed curve). 
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TABLE II 
Potential U,(r) (I=O) for Two Sets of Ci,=4(a2-b*)= U,(O) and 

A= (a - h)/(a + b) 

U” 1.0 -1.0 

0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

0.20 

0.40 

0.60 

0.80 

1.00 

1.20 

1.40 

1.60 

1.80 

2.00 

2.40 

2.80 

3.20 

3.60 

4.00 

4.40 

1.oooooO 
1.000000 
0.974588 
0.974595 
0.95017 
0.95018 
0.92670 
0.92672 
0.90412 
0.90414 
0.88239 
0.88241 
0.78507 
0.78510 
0.63460 
0.63463 
0.52491 
0.52493 
0.44227 
0.44230 
0.37832 
0.37837 
0.32769 
0.32779 
0.2868 
0.2870 
0.2533 

0.2254 
0.2536 

0.2258 
0.2019 
0.2024 
0.1647 
0.1654 
0.1367 
0.1376 
0.1150 
0.1160 
0.098 
0.099 
0.084 
0.085 
0.073 
0.074 

- 1 .OOoOOo 
PO.999894 
- 1.024003 
- 1.024003 
- 1.04738 
- 1.04745 
- 1.0701 
- 1.0703 
- 1.0921 
- 1.0923 

-0.292 

-1.1134 
-1.1136 

-0.291 

- 1.207 
- 1.208 
- 1.322 
- 1.323 
- 1.325 
- 1.326 
- 1.224 
- 1.225 
- 1.0485 
- 1.0486 
-0.8384 
-0.8380 
-0.629 
-0.628 
-0.443 
- 0.442 

-0.175 
-0.174 
- 0.0307 
-0.0301 

0.0346 
0.0349 
0.0572 
0.0574 
0.05959 
0.05968 
0.05341 
0.05342 
0.04450 
0.04446 

Note. Upper values are calculated by (40), lower values is our 
result. The parameters h,, hk, Nk are also shown. 
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the inverse problem at I= 0, coincide with the exact value (36), (40) (44), (46). For 
1= 1 the discrepancy is considerable at small r and decreases as r increases (see the 
last column of Table I). 

Figure 2a shows the potential U3 (r) (44) at s = 1.5, when one bound state exists 
(N= 1). Its energy is also shown. The coordinate dependence of lF(E, r)l = If(E, r)l 
at different Es, obtained by solution of the Cauchy problem (21)-(23), (14), is 
presented in Fig. 2b. It is seen that at E = 0 the discrepancy between calculated and 
exact IF(E, r)l becomes considerable after the level has merged with the continuum, 
i.e., at r 2 rl = 0.398. This is probably a consequence of the fact that the approxima- 
tion we made use of in the vicinity of r = r, is too rough. The influence of the error 
in IF(E, r)l at small E on the accuracy of the potential reconstruction is, however, 
small enough, as it follows from Fig. 2b and from Table III. 

Figure 3, taken from [ 133, is presented for comparison with another method of 
solution of the inverse problem. It shows the Woods-Saxon potential (46) 

TABLE III 

Potential U,(r) (I= 0) for Different Numbers of Bound States, N = INTEGER((s + 1)/2) 

s 0.5 1.5 3.5 19.5 

h, 0.02 0.02 0.02 0.005 
hk 0.15 0.15 0.15 0.5 

r Nk 100 120 180 120 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.4 

1.8 

2.2 

2.6 

-- 0.750000 - 3.7500 - 15.750 -400 
- 0.749995 - 3.7499 - 15.747 -398 
- 0.720782 - 3.6039 - 15.136 -384 
-0.720788 - 3.6038 - 15.143 -387 

-0.64173 - 3.209 - 13.48 ~ 342 
-0.64170 - 3.202 - 13.50 -347 

-0.53368 - 2.67 - 11.21 -284 
-0.53363 - 2.63 -11.21 -291 

-0.41929 -2.10 -8.81 -223 
-0.41924 -2.04 -8.79 -229 
-0.31498 - 1.57 - 6.62 -168 
-0.31496 - 1.52 -6.61 -172 

-0.16211 -0.81 -3.40 -86 
-0.16216 -0.77 -3.39 -91 

- 0.07767 -0.39 -1.63 -41 
-0.07772 -0.37 - 1.60 -45 
-0.03594 -0.18 -0.75 -19 
-0.03598 -0.17 -0.71 -19 

-0.01637 -0.08 -0.3 -9 
-0.01638 -0.08 -0.7 -6 

Note. Upper values are calculated by (44), lower values is our result. The parametrs h,, h,, N, are 
also shown. 
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0.5 
r 

FIG. 3 [13]. Woods-Saxon potential U,(r) (Eq. (46)) for C/,, = 1, a = 0.11, R = 0.5. Solid line-xact 
(coincides with calculated in present paper in the figure scale); dashed and dotted lines-alculated in 
[ 133 with 4 and 12 adjustable parameters, respectively. 

TABLE IV 
Woods-Saxon Potential U,(r) for ci, = 1, a = 0.11, R = 0.5 

r u r u r U 

0.00 -0.989496 0.08 -0.978505 0.80 -0.061383 
-0.989498 -0.978508 -0.061387 

0.01 -0.988508 0.10 -0.974328 0.90 -0.025672 
-0.988509 -0.974333 -0.025680 

0.02 -0.987428 0.20 -0.93862 1.00 -0.01050 
-0.987429 -0.93865 -0.01052 

0.03 -0.986248 0.30 -0.86035 1.10 -0.00426 
-0.986249 -0.86042 -0.00428 

0.04 -0.984959 0.40 -0.71281 1.20 -0.00172 
-0.984960 -0.71285 -0.00175 

0.05 -0.983551 0.50 -0.5OOoO 1.30 -0.00069 
-0.983553 -0.49991 -0.00072 

0.06 -0.982014 0.60 -0.28719 1.40 -0.00028 
-0.982016 -0.28708 -0.00031 

0.07 -0.980336 0.70 -0.13965 1.50 -0.00011 
-0.980338 -0.13962 -0.00014 

No@. Upper values are calculated by (46), lower values is our result obtained at I= 0, h,=0.005, 
h, = 0.5, Nk = 80. 
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reconstructed in the form of the Bargmann potential with n ajustable parameters. 
It is seen that the error of such a calculation with n = 4 and with n = 12 is 
considerable at small r. The error of our calculation is less than 10e4 at all r (see 
Table IV, and is invisible in this plot. 

More complete comparison of calculated and exact values for different potentials 
is given in Tables I-IV. 

The presented results show that using our method one can obtain very high 
accuracy with the proper choice of h,, hk, and N,+. Especially good results are 
obtained for monotonic potentials at I = 0, N = 0. To achieve the same accuracy for 
non-monotonic potential or in the presence of bound states (N3 1) or in the case 
Ia 1, one must diminish h, or h, and increase N,. 

5. CONCLUSIONS 

The characteristic feature of the proposed approach is that its exact equations are 
convenient for the direct application of numerical methods. It is achieved due to the 
transition from the linear equation for a wave function (more exactly, for the 
Gel’fand-Levitan or Marchenko kernel) to non-linear equations for slowly varying 
functions having a simple physical meaning. Starting from this idea one can 
generalize the presented approach to other inverse problems, for example, to the 
inverse Sturm-Lionville problem and to the inverse scattering problem on the 
entire real axis. Also it is interesting to develop a similar approach for the inverse 
scattering problem at fixed energy. As the test calculations give good results even 
with the simplest computational algorithms we hope that the presented method will 
be useful for a wide range of problems. 
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